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Meng Tze
500 BC

He who exerts his mind to the utmost knows nature’s pattern.

The way of learning is none other than finding the lost mind.

Man’s task Is to understand patterns in
nature and society.

Mencius







It Is man’s obligation to explore the most difficult questions in
the clearest possible way and use reason and intellect to arrive
at the best answer.

Man’s task is to understand patterns in nature and society.

The first task is to understand the individual problem, then to
analyze symptoms and causes, and only then to design
treatment and controls.

Ibn Sina 1002-1042
(Avicenna)




Optimality in Biological Systems

Cell Homeostasis

SIS T

Cellular Metabolism

The individual cell is a complex
feedback control system. It pumps
lons across the cell membrane to
maintain homeostatis, and has only
limited energy to do so.
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R. Kalman 1960

Optimality in Control Systems Design
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Optimality and Games

Optimal Control is Effective for:
Aircraft Autopilots
Vehicle engine control
Aerospace Vehicles
Ship Control
Industrial Process Control

Multi-player Games Occur in:
Economics
Control Theory disturbance rejection
Team games
International politics
Sports strategy

But, optimal control and game solutions are found by
Offline solution of Matrix Design equations
A full dynamical model of the system is needed



We want to find optimal control solutions online in real-time
using adaptive control techniques

Adaptive Control Structures for:

A. Optimal control B. Zero-sum games C. Non zero-sum games

1. System dynamics
2. Value/cost function

3. Bellman equation
4. HJ solution equation (Riccati eq.)

5. Policy iteration — gives the structure we need



Books

F.L. Lewis, D. Vrabie, and V. Syrmos,
Optimal Control, third edition, John Wiley and Sons, New York, 2012.

New Chapters on:
Reinforcement Learning
Differential Games

D. Vrabie, K. Vamvoudakis, and F.L. Lewis, Optimal Adaptive Control and
Differential Games by Reinforcement Learning Principles, IET Press,
2012, to appear.



Continuous-Time Optimal Control

System dynamics Xx=f(x,u)=f(x)+g(x)u
Cost/value V (x(t)) = Tr(x, u) dt = T(Q(x) +u'Ru) dt
t t Leibniz gives

. . . . . Differential equivalent
Bellman Equation, in terms of the Hamiltonian function “

oV . AN (v ~
H(x,&,u)=V+r(x,u):(aj x+r(x,u)_(&j (f(x)+g(x)u)+r(x,u)=0

oH

Stationarity condition el
ou

0
11, OV
Stationary Control Policy U=h(X)=-%R™g (x)&
N\ T “N\T .
HJB equation O:[dlj f +Q(X)_%[dL] gR—lgT dL , V(O) =0
dx dx dx

Off-line solution
HJB hard to solve. May not have smooth solution.
Dynamics must be known



Optimal Control: Linear Quadratic Regulator

System X = AX + Bu

Cost V(X(t)) = T(xT Qx+u'Ru)dr = x" (t)Px(t)

Differential equivalent is the Bellman equation _
jT Scalar equation

0= H(x,g—v,u):\/ +x ' Qx+Uu'Ru :2(ﬂ X+ X' Qx+u'Ru=2x"P(Ax+Bu)+x"Qx+u'Ru
X

OX
Given any stabilizing FB policy u=-—KX

The cost value is found by solving Lyapunov equation = Bellman equation

0=(A-BK)'P+P(A-BK)+Q+K'RK Matrix equation

Optimal Control is
u=-R'B'Px=—-KX
Algebraic Riccati equation
0=PA+A'P+Q-PBR'B'P
Full system dynamics must be known
Off-line solution



We want to find optimal control solutions
Online In real-time
Using adaptive control techniques
Without knowing the full dynamics



Optimality in Biological Systems

Every living organism improves its control actions based on
rewards received from the environment

The resources available to living organisms are usually meager.
Nature uses optimal control.

Reinforcement Learning

1. Apply a control. Evaluate the benefit of that control.
2. Improve the control policy.

RL finds optimal policies by evaluating the effects of suboptimal policies



Different methods of learning

Reinforcement learning We want OPTIMAL performance
lvan Pavlov 1890s - ADP- Approximate Dynamic Programming

Actor-Critic Learning

Desired
performance
Reinforcement
signal
< Critic
Tune
actor
Control

Adgptive | INPULS | gyqem .
Learnjng system
outputs

/ Actor

Sutton & Barto book



Reinforcement
Learmnq and Adaptwe FL. Lewis and D. Vrabie,
Dyﬂamlc Proqrammlnq “Reinforcement learning and

adaptive dynamic programming
for FeedbaCk CO“thI for feedback control,” IEEE

| Circuits & Systems Magazine,
S Bragsn e Invited Feature Article, pp. 32-
50, Third Quarter 2009.

C 1

R Living organisms learn by
= B acting on their environ- .
ment. observing th re- IEEE Control Systems Magazine
- - g reward stimulus,
and adjusting their actions 114 . .
accordingly to improve R f t I g d
! sccordingly to imorove einforcemen earnin an
based or Reinforcement ”
e e feedback Control,” Dec. 2012
tions of optimal behavior ee aC On ro ] eC'
ooourring in natural sys-
tems. We describe math-
ematical formulations for
Reinforcement Learning
anda practical iImplemen-
tation method known as
Adaptive Dymamic Pro-
3] gramming. These give us
insight into the design of
controllers for man-made
engineered systems that
both learn and exhibit op-
timal behavior.

EEEE CIRTINTS AND SYSTEMS MAGAZINE E3-636%,09/525 0082009 EEE THIRD OUARTER 2009



RL has been developed for Discrete-Time Systems
Discrete-Time System Hamiltonian Function

H (X, VV (X ), h) = (X, h(% ) + My (Xiea) = Vi (%)
» Directly leads to temporal difference techniques

» System dynamics does not occur
» Two occurrences of value allow APPROXIMATE DYNAMIC PROGRAMMING methods

Continuous-Time System Hamiltonian Function

H (x,ﬂ,u) =V +r(x,u) = (gj X+r(x,u)= (ﬂj f(x,u)+r(x,u)
OX OX OX

Leads to off-line solutions if system dynamics is known
Hard to do on-line learning

» How to define temporal difference?
» System dynamics DOES occur
» Only ONE occurrence of value gradient

How can one do Policy Iteration for Unknown Continuous-Time Systems?
What is Value Iteration for Continuous-Time systems?
How can one do ADP for CT Systems?



Continuous-Time Optimal Control

To find online methods for optimal control Focus on these two equations

System dynamics Xx=Tf(x,u)=f(x)+g(x)u
Cost/value V(x(t)) = Tr(x, u) dt = T(Q(x) +Uu' Ru) dt

Bellman Equation, in terms of the Hamiltonian function

H(X,Z—\;,u) =V +r(x,u)=(%—\;j X+ r(X,u) =(aa—\;j (f(x)+g()u)+ r(%o

oH

210 /
ou

. oV
Stationary Control Policy |[U=h(X)=-%R™g’ (x)&

Stationarity condition

\ ANT \
HJB equation oz(dlj f+Q(X)_%(ddLXj gR—lgTddL , V(0)=0
X



Optimal Control: Linear Quadratic Regulator

System X = AX + Bu

Cost V(X(t)) = T(xT Qx+u'Ru)dr = x" (t)Px(t)

Differential equivalent is the Bellman equation

:
0= H(x,g—v,u):\/ +x ' Qx+Uu'Ru :2(2—\/) X+ X' Qx+u'Ru=2x"P(Ax+Bu)+x"Qx+u'Ru
X X

Given any stabilizing FB policy u=-—KX

The cost value is found by solving Lyapunov equation = Bellman equation

0=(A-BK) P+P(A-BK)+Q+K'RK

Optimal Control is
u=-R'B'Px=—-KX
Algebraic Riccati equation
0=PA+A'P+Q-PBR'B'P
Full system dynamics must be known
Off-line solution



CT Policy Iteration — a Reinforcement Learning Technique

N N
dVv dVv dVv
To avoid solving HIB equation 0= [Fj f +Q(x) _%[Fj gR™g’

*

dx

Find cost for any given admissible u(x)

T
0= (a_vj f(x,u)+r(x,u)=H (X,(?_V,u) CT Bellman equation
X OX Scalar equation
utility  r(x,u) =Q(x)+u'Ru
Policy Iteration Solution
_ S _ » Convergence proved by Leake and Liu 1967,
Pick stabilizing initial control policy Saridis 1979 if Lyapunov eq. solved exactly

Policy Evaluation - Fi B :
olicy Evaluation - Find cost, Bellman eq e Beard & Saridis used Galerkin Integrals to solve

Lyapunov eq.

0= —L| f(x,h (x))+r(x h:(x)
OX

e Abu Khalaf & Lewis used NN to approx. V for
V,(0)=0 PP

nonlinear systems and proved convergence

Policy improvement - Update control

h B 11,0V, Full system dynamics must be known
() ==7R"g () —= Off-line solution




LQR Policy iteration = Kleinman algorithm

1. For a given control policy u=-K;x solve for the cost:

0= AjT P, +P A +Q+ KjT RK; Bellman eq. = Lyapunov eq.
Matrix equation
Aj = A-— BKj
2. Improve policy:
_ p-1pT
Kijl =R™B Pj

= |f started with a stabilizing control policy K, the matrix P,
monotonically converges to the unique positive definite solution of
the Riccati equation.

= Every iteration step will return a stabilizing controller.
= The system has to be known.

=OFF-LINE DESIGN
=MUST SOLVE LYAPUNOV EQUATION AT EACH STEP.

Kleinman 1968



Integral Reinforcement Learning

Work of Draguna Vrabie

X=f(x)+g(x)u
Can Avoid knowledge of drift term f(x)

Policy iteration requires repeated solution of the CT Bellman equation

0=\/+r(x,u(x)):(g—\;j >’<+r(x,u(x)):(%—\;j f(x,u(x))+Q(x)+uTRuEH(x,%—\;,u(x))

This can be done online without knowing f(x)
using measurements of x(t), u(t) along the system trajectories



Lemma 1 - Draguna Vrabie

oV V

value V (X(t)) = j r(x,u)dr
T t
Oz(—j f(x,u)+r(x,u)EH(x,a—,u), V(©0)=0

OX OX

Is equivalent to  Integral reinf. form for the CT Bellman eq,.

V(x(t)):Tr(x,u)dr + V(X(t+T)), V(0)=0

t

Solves Bellman equation without knowing f(x,u)

Proof: d(V(X))_ oV T )
m _(&j f(x,u)=-r(x,u)

[ rxuydr == d(v () =V (x(®) -V (x(t+T))

t

Allows definition of temporal difference error for CT systems

e(t) = -V (x(t)) +t+jT r(x,u)dz + V(X({t+T))

t



value V(x(t)) = T r(x,u)dr

Lemma 1 - Draguna Vrabie

.
O:(ﬂj f(x,u)+r(x,u)=H (x,ﬂ,u), V(0)=0
OX OX
Is equivalent to  Integral reinf. form for the CT Bellman eq,.

V(x(t)):Tr(x,u)dr + V(X({t+T)), V(0)=0

t

Solves Bellman equation without knowing f(x,u)

Allows definition of temporal difference error for CT systems

e(t) = -V (x(t)) +t+jT r(x,u)dz + V(X({t+T))

t



Lemma 1 - D. Vrabie- LQR case
A'P+PA +L'RL +Q=0
A = A-BL
is equivalent to  Integral reinf. form

t+T
X' OPx(t)= [ X" (1)(Q+L' RL)X(x)dz + X' (t+T)Px(t+T)
t

Solves Lyapunov equation without knowing A or B

Proof:

d(x'Px)
dt

t]‘T XT (Q + LT RL)XdT — _t-ijT d (XT PX) _ XT (t) PX(t) . XT (t +T)PX(t +T)

t

=x"(A'P+PA)x=-x"(L'RL+Q)x



Lemma 1 - D. Vrabie- LQR case

ACT P+PA + L'RL + Q=0 Matrix equation
A =A-BL
is equivalent to  Integral reinf. form

o Scalar equation

X' OPx(t)= [ X" (1)(Q+L' RL)X(x)dz + X' (t+T)Px(t+T)
t

Solves Lyapunov equation without knowing A or B



Integral Reinforcement Learning (IRL)- Draguna Vrabie

IRL Policy iteration

Policy evaluation- IRL Bellman equ+z%tion CT Bellman eq.

Costupdate V, (X(1)) = j rou)dt + Vo (X(t+T))

t

f(x) and g(x) do not appear

T
Equivalent to 0= N f(x,u)+r(x,u)=H (x,a—v,u)
OX OX

Solves Bellman eq. (nonlinear Lyapunov eq.) without knowing system dynamics

Policy improvement

_ oV
Control gain update U, =N, (X)=-%R™g’ (X)a—xk g(x) needed for control update

Initial stabilizing control is needed

Converges to solution to HIB eq. O:(dV j f+Q(x)—i(dV j gRg" dv
4

D. Vrabie proved convergence to the optimal value and control



Integral Reinforcement Learning (IRL)- Draguna Vrabie
CT LOR Case

Value function is quadratic V (x(t)):xT (t)Px(t) u, (t) =—-L x(t)
CT Bellman eq. T
X' O)Rx(®)= [ X" (2)(Q+L RL)x(r)dz+X" (t+T)Px(t+T)
t ™~

is equivalent to

A'P+PA +LRL +Q=0
A =A-BL

Solves Lyapunov equation without knowing A or B

Lk+1 = R_l BT Pk Only B is needed
Converges to solution to ARE O = PA-I— AT P + Q — PBR_lBT P

~ Theorem — D. Vrabie
This algorithm converges and is equivalent to Kleinman’s Algorithm

This is a data-based approach that uses measurements of x(t), u(t)
Instead of the plant dynamical model.




Another View- Bellman Optimality Equation Dimitri Bertsekas

s a Fixed Point Equation Warren Powell
Sean Meyn

V' (x(®) = min {tTtr(X(T),U(T))dT ; V*(x(t+At))} o Viabie

t<r<t+At & ©

or Lewis, Vrabie, Syrmos 2012

0= min {Ttr(x(r),u(r))dr + V*(x(t+At))—V*(x(t))}

u(r)
t<r<t+At & ©

Policy must be stabilizing to solve this eq.
Define Contraction map

Bellman Eq. o:tTtr(x(r),uk(r))dr + V (X(t+At)) -V, (x(1))

t

ukﬂ(x(t)):ar%(rrr)]in Ttr(x(r),u(r))dr + k(x(t+At))—Vk(x(t))}

Recall :
equivalent

o:(%j £ (U, () + 106 U, ()
OX



CT Policy Iteration — How to implement online?
Linear Systems Quadratic Cost- LQR

Value function is quadratic ~ V (x(t)):xT (t)Px(t)

Policy evaluation- solve IRL Bellman Equation
t+T

X' ORX()= [ X' (0)Q+L RL)X(r)dz + x (t+T)RXx(t+T)
t

t+T
X" (t)Rx(1) = X" (t+T)Rx(t+T)= [ x' (1)(Q+Ly ' RL)x(r) d7
t

B0 xz(t)]{p“ p”}{xl(t)}[xl(tn) xz(t+T)}{p“ p”}{xl(t”)}

P Pa | X() P P || X(t+T)
()] C(x)? ]
=[Py P Pul|2¥XX°| [Py Pu Pyl 2XX°
| (x°)° Jo (X)? Loy

=Py [X(O) =X (t+T)] /

N

Quadratic basis set



Algorithm Implementation

Critic update
t+T

X' (t)Rx(®)= | x" (2)@Q+L' RL)x(x)dz+X" (t+T)Rx(t+T)

Use Kronecker product vec(ABC) = (CT & A) vec(B)

To set this up as X (t) = x(t) ® x(t) is the quadratic basis set

t+T
D X(t)= j x(7)" (Q+L,' RL)x(z)dz+P, X(t+T)

T c.f. Linear in the parameters system ID
t+

p gM)= B [XO-Xt+T)]= | x(x)" (Q+L" RL)x(z)d7
t

= p(t,t +T) Reinforcement on time interval [t, t+T]
Quadratic regression vector

«—— Regression matrix
Same form as standard System ID problems 0 h(u,x) = p(u, x)

Solve using RLS or batch LS Uﬁknown parameters

Need n(n+1)/2 data points along the system trajectory



Nonlinear Case- Approximate Dynamic Programming

Value Function Approximation (VFA) to Solve Bellman Equation
— Paul Werbos (ADP), Dmitri Bertsekas (NDP)

V, (x(t)) = Hf (Q(X)+u,"Ru, )dt+V, (x(t+T))

Approximate value by Weierstrass Approximator Network :WT¢(X)

t+T

W, g(x(1) = | (QU)+u,"Ru, ) dt + W g(x(t+T))

t
t+T

W, [¢(X(t)) —p(x(t +T))] = j (Q(X) +u,"Ru, )d’[ Scalar equation

with vector unknowns

— g
~

Reinforcement on time interval [t, t+T]

regression vector

Now use RLS along the trajectory to get new weights W, ,

Then find updated FB

Uy =N () =—-%R7g" (X)%k =-%R7g’ (X){

apx®) |
ox(t) “

Direct Optimal Adaptive Control for Partially Unknown CT Systems



Integral Reinforcement Learning (IRL)
1. Select initial control policy

2. Find associated cost
t+T

This is a data-based approach that uses
measurements of x(t), u(t)
Instead of the plant dynamical model.

Bellman Equation
Solves Lyapunov eq. without knoiging dynamics

B [XO-XE+T)]= [ ()" (Q+L ' RL)X(r)dr=p(t,t+T)
t

3. Improve control L, =R™B'P,

observe x(t)

apply uk(t)=L,x(t)
. 4

observe cost integral

observe x(t+T)

Data set at time [t,t+T)

(x(t), po(t, t+T),x(t+T))

ﬁ update P

Ais not needed anywhere

t+T

/ ~+

J

~

update control gainto L,

do RLS until convergence to P, “




Batch LS Algorithm Implementation

Or use Recursive Least-Squares solution along the trajectory

The Critic update

t+T
X" (t)Rx®)= | x" (2)@Q+L'RL)xX(x)dz+X" (t+T)Rx(t+T)
t
can be setup as

t+T

B o®)=P [KO-X+T)]= [ x@)T (Q+L . RL)x(#)dr=d(X(t), Ly)
t

X(t) = x(t) ® x(t) Isthe quadratic basis set
Evaluating d(X(t), i) for N=n(n+1)/2 trajectory points, one
can setup a least squares problem to solve
P =(XX )Xy
X=[plt) et+T) .. @{t+NT)]
Y=[d(X(t),K;) d(X(t+T),K;) ... d(X(t+NT), Ki)]T



Persistence of Excitation

t+T
B o= By [KO-X(t+T)]= [ x(2)" (Q+L RL)x(z)dz

e

Regression vector must be PE

Relates to choice of reinforcement interval T



Implementation

Policy evaluation
Need to solve online

t+T
B’ [XO-XE+T)]= [ ()" (Q+L ' RL)X(r)dr=p(t,t+T)
t

Add a new state= Integral Reinforcement
p=xQx+u'Ru

This is the controller dynamics or memory



Draguna Vrabie

Direct Optimal Adaptive Controller

Solves Riccati Equation Online without knowing A matrix

Run RLS or use batch L.S.

To identify value of current control

ZOH T

Update FB gain after
Critic has converged

Critic

T X
%

|
T X

A 4

P =X QOX+u'Ru{

System

Actor
— —

v

X = AX+ Bu

A hybrid continuous/discrete dynamic controller
whose internal state is the observed cost over the interval

'\
Dynamic
> Control
System
w/ MEMORY
<

Reinforcement interval T can be selected on line on the fly — can change



Gain update (Policy)

A
Lk

Reinforcement Intervals T need not be the same
They can be selected on-line in real time

Continuous-time control with discrete gain updates



Simulation 1- F-16 aircraft pitch rate controller

X=| 0.82225 -1.07741 -0.17555 0

-1.01887 0.90506 —-0.00215 0
X+ u
0 0 -1 1

ARE 0=PA+A"P+Q-PBR'B'P

Select quadratic NN basis set for VFA

Stevens and Lewis 2003

x=[a q J]

Exact solution Wl*:[p11 2P, 2P13 Poo 2P93 p33]T
=[1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]T



Simulations on: F-16 autopilot

A matrix not needed

System states

3.51 \*\
3t
\
2.5r Y
2 ;\k

X‘\s
0.5} ****** |
0 ‘ M“WWM
0 0.5 1 15 2
Time (s)
Critic parameters
| | e 00 .*
02 [ o® o ©°° 4
« P12
° * P(1,2
015 [ ° . P(2,2)
* P(1,1) - optimal
* P(1,2) - optimal
0.1 * P(2,2) - optimal | |
005* . ® oo oo ee o oo o TR YT AR Y Y .
0_ oo, oo o0 o0 o e e (XXX o ol
0 1 2 3 4 5 6

Time (s)

Control signal

il W
-0.1r ~ ]
0 // //f
_0.3, I I I ,

0 0.5 1 1.5 2

Time (s)

Controller parameters
OfF—= ¥ ‘ B
4
e

-0.2r A .
0.4 ! ! o ! %
0 0.5 1 15 2

Time (s)

Converge to SS Riccati equation soln

Solves ARE online without knowing A

0=PA+A"P+Q-PBR'B"P



Issues with Nonlinear ADP Selection of NN Training Set

LS local smooth solution for Critic NN update

Oz(é—vj f(x,u)+r(x,u)= H(x,a—v,u), V(0)=0
OX OX

V(x(t))=t+jTr(x,u)dr + V(X(+T)), V(0)=0
A oO——» X2‘
Pzt

@ Xl

time
> , lime
Integral over a region of state-space
Approximate using a set of points

Batch LS Recursive Least-Squares RLS

Take sample points along a single trajectory

Set of points over a region vs. points along a trajectory

For Linear systems- these are the same

For Nonlinear systems
Persistence of excitation is needed to solve for the weights
But EXPLORATION is needed to identify the complete value function
- PE Versus Exploration
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2. H-Infinity Control Using Neural Networks

System Performance output disturbance
z - d
« | Xx= f(X)+g(X)u+k(x)d
X y =h(Xx) u control

z:[yT uT:|T

u=1(x)

L, Gain Problem

Find control u(t) so that

ogHz(t)szt T(hTh+\uH2)dt
0 0 < y? For all L, disturbances

- And a prescribed gain y?

:Hd(t)szt j d )

0

2

dt

Zero-Sum differential game
Nature as the opposing player



2. Online Zero-Sum Differential Games
H-infinity Control

system  X= f(x,u)=f(x)+g(x)u+k(x)d
y = h(X) 2 players

Cost V (x,u,d) = [ (A h-+u"Ru =52 o) dt =[ r(x,u,d) o
t

t

Leibniz gives
Differential equivalent
Differential equivalent is ZS game Bellman equation

O=r(x,u,d)+V =r(x,u,d)+(VV )T (f (X)+g(X)u+k(x)d)=H (x,aa—\):,u,d)

V(0)=0
Given any stabilizing control and disturbance policies u(x),d(x)

the cost value is found by solving this nonlinear Lyapunov equation



Define 2-player zero-sum game as

V™ (x(0)) = min m(?xV(x(O),u, d) =min max j(hT (X)h(x)+u" Ru - y? HdHZ) dt
0

The game has a unique value (saddle-point solution) iff the Nash condition holds

min m(?xV(x(O),u,d)zmdaxminV(x(O),u,d) -

A necessary condition for this is the Isaacs Condition
minmax H(x,VV,u,d)=maxmin H(x,VV,u,d)
u d d u
Stationarity Conditions

o OH _oH
ou od



Game saddle point solution found from Hamiltonian - BELLMAN EQUATION

H (x%,u,d):hTmuT Ru—y? ||d||2+(VV )" (f(0+g(x)u+k(x)d)

_OH _oH

Optimal control/dist. policies found by stationarity conditions O_a—u’ 0

u=—1Rg" (x)VV
d =# kT (X)VV
HJl equation
0=H(x,VV,u,d")
=hTh+VV T (x)f(x) - %VVT (X)g(x)R1gT (X)VV (x) + éva (x)kk T VV (x)
V(0)=0

(‘Nonlinear Game Riccati’ equation)



Linear Quadratic Zero-Sum Games
X = Ax+Bu, + B,u,
y = CX

—J, (X(t),ug,uy) = Iy (X(t),up, Uy ) = %J.(XTQXJr Uy Rygly —Up Rypu,) d7 , Q=C'C
t

Game Algebraic Riccati Equation

0=A"P+PA+Q-PBR, "B/ P+PB,R, "B, P

u =-Kx=-R7B/PX, u,=K,x=R,B,;Px



Policy Iteration Algorithm to Solve HJI

Start with stabilizing initial control policy Uy (X)

1. For a given control policy U (X) solve for the value Vj:1(x(1))

0=h' h+VVjT+1(x)( f(X)+g(X)u; (x))+uJT- (X)Ru; (x)+évv}ﬂ(x)kkT VVi1(X)

Vjx(0)=0 HJ equation
Nonlinear ‘Riccati’ eq.
2. Improve policy: Solve for Available Storage

Ui (X)=—% R™g' (X)VVja

Minimal nnd solution of HJ equation is the Available Storage for U; (x)

Off-line solution
Nonlinear HJ equation must be solved at each step



Double Policy Iteration Algorithm to Solve HJI

Add inner loop to solve for available storage
Start with stabilizing initial policy Uy (x)

1. For a given control policy Uj(X) solve for the value Vju(X(1)

p——

2. Set d°=0 . Fori=0,1,... solve for Vji (x(t)), d'*

i : - 12
0=h"h+VVT (x)(f+gu;+kd")+u;"Ru; -2 Hd | H 75 game Bellman eq.

g =2i2 kT (x)VV|
y

On convergence set V1 (X) =V, (x)

~——

3. Improve policy:

) _ 1 p-14T _ e Convergence proved by Van der Schaft if can solve
uJ+1(X) 2 R g (X)VVJJF1 nonlinear Lyapunov equation exactly

e Abu Khalaf & Lewis used NN to approximate V for
nonlinear systems and proved convergence

Off-line solution
Nonlinear Lyapunov equation must be solved at each step



Draguna Vrabie
Online Learning for Two-Player Zero-Sum Games

Online game solutions without knowing A matrix

System dynamics
X=Ax+Bw+Bu, xeR", ueR™, weR"
Cost function

V (Xy,U, W) = j(xTCTCx+uTu —w' w)dt
0

Goal: saddle point

V (X, 0,W ) 2V (X, U, W) >V (Xp,U~, W)
State-feedback stabilizing solution

u'=-B, PX, W =B,/Px, V(XU ,W)=x, Px,

0=A"P+PA+C'C-P(B,B,' —B,B,' )P



Online Policy lteration for 2-player ZS games

Options:
1. Both players learn online (two critics) to optimize their behavior policies
a) simultaneously

b) taking turns —while one is learning the other player maintains a
fixed policy

2. Only one player learns online => single critic

- the other player uses a fixed policy and only updates it at discrete
moments based on information on the policy of his opponent

: Controller/ Disturbance/ :
Player 1 Player2
U System W
— T v : = !
—>| u=-B T | X=Ax+Bu+Bw; xg [* 1 ]
X

Parameters that define the policies of the players



Online Nash equilibrium Learning

The game is played as follows:
1. The game starts while Player 2 (the disturbance) does not play.
2. Player 1

a. plays the game without opponent and

b. uses reinforcement learning to find the optimal behavior which
minimizes its value;

c. then informs Player 2 on his new optimized value fn.
3. Player 2 starts playing using the value fn. of his opponent.
4. Player 1

a. corrects iteratively his own behavior using reinforcement learning such
that its value is again minimized;
b. then informs Player 2 on his new optimized value fn.

5. Go to step 3 until the two policies are characterized by the
same parameter values.



PO“CV lteration for Online Zero-Sum Games Convergence proven by Lanzon,
Feng, Anderson 2009

The game is played as follows:
1.i=% P'=P’=0; w=B'P’x=0 Draguna Vrabie
2. Player 1 solves online, using HDP, the Riccati equation

PIA+A'P —P!B,B,' P/ +C'C =0

u, =-B, Pix

then informs Player 2 on P _
3. Player 2 uses the value Py of Player 1. Computes his policy W, = BlT P X
4. Player 1 solves online, using HDP, the Riccati equation;

ZyAT + AT 2= 2,ByBy 2, + 2 BB 2, =0
P, =Z,+R™ correction of the policy of Player 1

u; =—B," P'x

then informs Player 2 on Pui

5. Set i=i+1, Go to step 3 until the two policies are characterized by the
same parameter values.

Riccati equations can be solved using HDP without knowledge of the A matrix



Integral Reinforcement Learning (IRL) to solve ARE- Draguna Vrabie

CT Bellman eq.

t+T
X' O)Rx®)= [ X" (2)(Q+L RL)x(r)dz+X" (t+T)Px(t+T)
t

N

Solves Lyapunov equation without knowing A or B

L.,=R'B'P,

Only B is needed
Converges to solution to ARE O = PA-I— AT P + Q — PBR_lBT P

This is a data-based approach that uses measurements of x(t), u(t)
Instead of the plant dynamical model.



Actor-Critic structure - three time scales

i(k) _ i-1 i(k) L
ROEZRA4AT ) cie |
{ Learning i
i T T X i F)uI
V X[
V=x'CTex+a"4d, ifi=1
i(k-1) __ i-1, i(k-1) . | i—
R =R :+Z VoWl WedTd,  ifisl R
....................... frosesseeeeeess J
Controller/ i iDlsturbance/
Player1 ' Player2 i
_ T4 (k1) System W i N
.................. A -SSR W RS-
¥ X




Comparison of CT IRL ADP to Discrete-Time ADP

X = AX+ Bu ) Frequency
X(t) =[Af (1) AP, (t) AX, () AE()] Generator output
-UT, KT, 0 0 0 Governor position
acl 0 HECME 0 g )0 Integral control
“1/RT, 0 -1T, -1/T, 1/T,
K, 0 0 0 0
a. Use discrete-time ADP A'PA-P+Q-A"PB(B'PB+R)"B'PA=0.
-0.0665 8 0 0
0 -3.663 3.663 0
A= , B=[0 0 13.7355 0].
-6.86 0 -13.736 -13.736
0.6 0 0 0

0.4750 0.4766 0.0601 0.4751
o 0.4766 0.7831 0.1237 0.3829
0.4802 0.4768 0.0603 0.4754 DARE 10,0601 0.1237 0.0513 0.0298 |

04768 0.7887 01239 0.3834 ) 0.4751 0.3829 0.0298 2.3370
0.0603 0.1239 0.0567 0.0300

0.4754 0.3843 0.0300 2.3433

sampling period of T=0.01s.

critic NN —

System states P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)
w w w w 2.5 ‘ ‘ ‘ ‘ ‘ |
2t s —P(L1)
—P(1,3)
1.5 L e P(2,4)
e T P@A4)
e =
-0.5 I I I I I
0.1 ‘ ‘ ‘ ‘ ‘ 0 10 20 30 40 50 60
0 1 2 3 4 5 6 Time (s)

Time (s)



b. Use continuous-time IRL ADP
0=PA+ ATP+Q— PBR'B'P

0.4750 04766 0.0601 04751 Solves ARE online without knowing A
B 0.4766 0.7831 0.1237 0.3829
100601 0.1237 0.0513 0.0298 | P matrix parameters P(1,1),P(L3),P(2.4),P(4.4)
0.4751 0.3829 0.0298 2.3370 25 | | [R—
20 //" . PLY)]| |
R —P(@13)
1.5¢ '., ......... P(2,4) |
V4 === P(4,4)
4
: A
IRL period of T= 0.1s. //
. . 0.5 l:, P R X R -.::::: .................. jt
Fifteen data points  (x(t),x(t+T), p(t:t+T)) R i
. -0.5 : : : : :
Hence, the value estimate was updated every 1.5s. .

Less computation is needed using CT IRL
In DT ADP sampling period is 0.01s and the critic parameter estimates were updated every 0.15s.

Yet, the parameter estimates for the P matrix entries almost overlay each other.



Simulation- H-inf control for Electric Power Plant- LFC
X=Ax+B,u+Bd

) Frequency
x(t)=[Af(t) AR, () AX,(t) AE(t)] Generator output
T KT, o 0 0 Governor position
I B Ve A VA | o Integral control
|-1/RT, O UT, LT, P |1,
K: 0 0 0 0
-0.0665 8 0 0
Ao O 9003 3888 0 e g 0 137385 O . B,=[-8 0 0 0f Load disturbance
-6.86 0 -13.736 -13.736
06 0 0 0

0=A"P+PA+C'C-P(B,B,' —B,B,' )P

AIs unknown
B,, B, are known



Simulation result — Electric Power Plant LFC

e System — Power plant - internally stable system;

— system state

X=[Af (t) AP, (t) AX 4 (t) AE(1)]
(incremental changes of: frequency deviation, generator output, governor
position and integral control)

— Player 1 - controller ; Player 2 — load disturbance

* Nash equilibrium solution

POO

u

©0.6036
0.7398
0.0609
| 0.5877

1=

0.7398
1.5438
0.1702
0.5978

0.0609
0.1702
0.0502
0.0357

0.5877
0.5978
0.0357
2.3307

* Online learned solution using ADP — after 5 updates of the parameters

p5

u

Solves GARE online without knowing A 0= ATP+PA+C'C - P(B, BZT _ BlBlT)P

" 0.6036 0.7399
0.7399 1.5440
0.0609 0.1702
| 0.5877 0.5979

0.0609
0.1702
0.0502
0.0357

0.5877 |
0.5979
0.0357

2.3307

of Player 2



Parameters of the critic — ARE Solution elements

Parameters of the cost function of the game

!

*
°
|8
°
.

.
.

3

—P(1,1)
— P@1,2)
—P(2,2)
— P(3,4)
e P44

100
T

150
ime (S)

200

— Cost function learning
using least squares

— Sampling integration time
T=0.1s

— The policy of Player 1 is
updated every 2.5 s

— The policy of Player 2 is
updated only when the
policy of Player 1 has
converged

— Number of updates of
Player 1 before an update
of Player 2

moments when Player 2 is
updated









Oscillation is a fundamental property of neural tissue

Brain has multiple adaptive clocks with different timescales

gamma rhythms 30-100 Hz, hippocampus and neocortex
high cognitive activity.
» consolidation of memory
« spatial mapping of the environment — place cells

The high frequency processing is due to the large amounts of sensorial data
to be processed

theta rhythm, Hippocampus, Thalamus, 4-10 Hz
sensory processing, memory and voluntary control of movement.

Spinal cord

v

Motor control 200 Hz

D. Vrabie, F. Lewis, and Dan Levine- RL for Continuous-Time Systems



FUHSUPEWIEE-CI Learning
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"Reinforcement Learning
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Limbic system

f

(Supervised Learning Target

+

{ Error
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Figure 1. Leamning-oriented specialization of the cerebellum, the basal ganglia, and the cerebral
cortex (1], [2]. The cerebellum is specialized for supervised learning based on the ervor signal
encoded n the climbing fibers from the inferior olive. The basal ganglia are specialized for
reinforcement learning based on the reward signal encoded in the dopaminergic fibers from the
substantia nigra. The cevebral cortex is specialized for unsupervised learning based on the statistical

properties of the input signal.

Doya, Kimura, Kawato 2001



_ picture by E. Stingu
Summary of Motor Control in the Human Nervous System  p. vrabie

Cerebral cortex gamrEl/rhythms 30-100 Hz
Motor areas _
Long term Unsupervised
A .
learning
\ 4
Memory Basal . —
functions gangh »  Thalamus Limbic|System | Hippocampus
A A
Reinforcement v thetalrhythms 4-10 Hz
Learning- dopamine » Cerebellum [*
Short term
A 4
Supervised Brainstem
learning 5
(eye movement)
vV VY
inf. Spinal cord
olive
A A
Motor control 200 Hz
reflex
A 4
Exteroceptive Interoceptive Muscle contraction
receptors receptors and movement

A A

Hierarchy of multiple parallel loops



Adaptive Critic structure

Reinforcement learning

Theta waves 4-8 Hz

e Critic
(cost approximation/«
/ policy evaluation)
II
. . ’j
Desired beha\.flor/ . Actor,f. Cpntrol R SyS tem
Reference trajectory (control pthy) signal
v

Output/State

Motor control 200 Hz



Cerebral cortex

Motor areas gamma rhythms 30-100 Hz

Intense processing
B ph— / v due to the amounts of
asal ganglia

Thalamus Hippocampus | jnformation data to be

_Processed _
Cognitive map of the environment

v - place cells -

A A

theta rhythms 4-10 Hz Cerebellum

A

theta rhythms 4-10 Hz

Brainstem
Behavior reference
A .
Information sent to the
v v lower processing levels
inf. Spinal cord
olive
A A
“~——~_ Motor control 200 Hz
\ 4
Exteroceptive Interoceptive Muscle contraction and
receptors receptors movement










Kyriakos Vamvoudakis

2. Synchronous
Online Solution of Optimal Control for Nonlinear Systems

Optimal Adaptive Control

Policy Iteration gives the structure needed for online optimal solution

A new structure of adaptive controllers



CT Policy Iteration — a Reinforcement Learning Technique

«N\T * N\ T *
dv dv dVv
To avoid solving HIB equation 0= [Fj f +Q(x) —%[—j gR7g" —

utility r(x,u)=Q(x)+u'Ru

Cost for any given admissible u(x)

oV

! -
O:(&j f(x,u)+r(x,u)= H(x,&,u)

Policy Iteration Solution

Pick stabilizing initial control policy

Policy Evaluation - Find cost, Bellman eq.

v
0= (a—xjj f(x,h (X)) +r(xh (x))
V,(0)=0

Policy improvement - Update control

h _ R—l T av]
ia(X)==%R"g (X)g

dx dx

CT Bellman equation

e Convergence proved by Leake and Liu 1967, Saridis
1979 if Lyapunov eq. solved exactly

e Beard & Saridis used Galerkin Integrals to solve
Lyapunov eq.

e Abu Khalaf & Lewis used NN to approx. V for
nonlinear systems and proved convergence

Full system dynamics must be known
Off-line solution




Kyriakos Vamvoudakis

Synchronous
Online Solution of Optimal Control for Nonlinear Systems

Optimal Adaptive Control

Policy Iteration gives the structure needed for online optimal solution

Need to solve online:

Bellman eq. for Value

0=V +r(x,h(x)) = @—U %+ r(x,h(x)) :(‘Z—U f(x,h(x)) +Q(x)+h"Rh=H (x,z—\;, h(x))

Control update

h(x)=—1R™g" ()VV



Solve by parameterizing value V(x)
Value Function Approximation — Paul Werbos
converts Bellman PDE into algebraic equation

Critic NN
Take VFAas V(X) =W, ¢;(X)+&(X) . VWV (X) =V W,
T
Then Bellman eq 0= (%—\Q (f +gu)+Q(x)+u'Ru=H (x,éa—\;,u)
becomes

PDE

W= LS solution to this eq for given N.  Unknown.

H(x,W,u) =W, Vg, (f +gu)+Q(x)+u'Ru =g,

Action NN for Control Approximation

U(X)=—% R1g" (X)V¢1TW2, Comes from U(X)=—3R7'g' (x)VV
VV(X)= V4 W,



Online Synchronous Policy Iteration

Theorem (Kyriakos Vamvoudakis)- Online Learning of Nonlinear Optimal Control

Let o, =V (f+9u) be PE. Tune critic NN weights as

- oE. o T~ - i
W, = —ay ——=—a, = Lo [c:r]‘r W, +Q(x) +u’ Rul Learning the Value
oW (o) oy +1)”

Tune actor NN weights as

W, =—a, {(FW, —F,57 V\,}l)—%ﬁl(X)\/\,}zmT (X)W} Learning the control policy
where BI0=VAMIIRTG (VA () M= 5o

Then there exists an N, such that, for the number of hidden layer units N > N,

the closed-loop system state, the critic NN error V\~/1 =W, -W,

and the actor NN error V\~/2 =W, —V\A/2 are UUB bounded.



Summary Nota Bene
Control policy

1T T\\)
u(x)=—1Rg" ()V g, W,
Tune critic NN weights as

/T [y W, +O(x) +u” Ru]
oW, (o) 0y +1)°

R / Extra terms needed for stability

A ~ T A 1 — ~ ~
W, =—a, {(FW, —F,5 Wa)— D1(xW, m' (X)W}

MI’l = —da

Note, it does not work to simply set
1T W
u(x)=—1R " () Vg, W

Must have TWO NNs



Lyapunov energy-based Proof:

L(t) =V (x)+ %tr(\/\lT a,"W,) + %tr(\/\72T a,"W,).

/

V(x)= Unknown solution to HIB eq.

dv ) dv ) dv
0= 22| F+Q(X) -1 —— | gRg" —
(dxj Q) 4(dxj Y

Guarantees stability

V\72 :Wl _V\72

W,= Unknown LS solution to Bellman equation for given N

H (W, u) =W, Vg (f +gu)+Q(x)+u' Ru = ¢,



ONLINE solution
Does not require solution of HIB or nonlinear Lyapunov eq.

Does require system dynamics to be known
Finds approximate local smooth solution to NONLINEAR HJB equation online
An optimal adaptive controller

‘indirect’ because it identifies parameters for VFA
‘direct’ because control is directly found from value function



A New Adaptive Control Structure with Multiple Tuned Loops
Adaptive Critics

The Adaptive Critic Architecture Value update- solve Bellman eq.
V() =W, §1(x)

Policy Evaluation |
(Critic network)

cost |

Control policy update v
— | Action network | ¢—

u(x)=-1R7g" ()Vg, W,

Critic and Actor tuned simultaneously
Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control



Adaptive Control

|dentify the

W
O

ptimal Adaptive

|dentify the

Indirect Adaptive

e

Controller-

Direct Adaptive

V(x) =W ' p(x)

control

A\ 4

Plant

v

output




Simulation 1- F-16 aircraft pitch rate controller

-1.01887 0.90506 —0.00215 0 Stevens and Lewis 2003
x=| 0.82225 -1.07741 -0.17555|x+|0|u x=[ae q J,]
0 0 -1 1
Q=1, R=I

Solves ARE online
0=PA+A"P +Q - PBR'B'P

Select quadratic NN basis set for VFA

Exactsolution W, =[p;; 2P, 2Pz P 2Pp3 Pasl'
=[1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]T

Must add probing noise to get PE
u(x)=—1Rg" (YVA'W, +n(t) (exponentially decay n(t))

Algorithm converges to

Wy (t;)=[L.4279 1.1612 -0.1366 1.4462 -0.1480 0.4317]".

R [2x, 0 0 ] [1.4279]
W, (t; )=[1.4279 1.1612 -0.1366 1.4462 -0.1480 0.4317]" le x 0 |1 1612

T
0

~  1p-1pTpy. 1p-1 X3 0 X -0.1366

U2 ()=—3R "B Px=—3R M 0 2x, 0 | |1.4462

0 0 2x3]

0.4317 |



Parameters of the critic NN

25 T
—Wm
oL —Wcz il
—WC3
n__ e
.y L5 W S R, B G e [ 3
Critic NN parameters- | W,
Converge to ARE solution 1§ -
ast | . _ . .
D - 4
_05 1 1 | 1 1 1 1
0 100 200 300 400 500 B00 700 800
Time (=)
System States
50 T
40 F <
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[ i
TR w\‘{' A _
10 |
| | .l! | | 1 ‘h! ) ol
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0k 4
bk g
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Nevistic V. and Primbs J. A. (1996)
Converse optimal

Simulation 2. — Nonlinear System

x=f(x)+g(X)u, xeR?

_ =X+ X
f(x) —[_o_sxl_o.5x2(1—(cos(2x1)+2)2)} Solves HIJB equation online
0 a . *
g(x):{cos(2x1)+2}' o:(dlj f+Q(x)—%(dV J gR—lgTdL
dx dx dx
Q=I1, R=I

Optimal Value V*(X)zlxl2 +X,°
2

Optimal control  u"(x) = —(cos(2x,) + 2)X,.

Select VFA basis set g (X)=[ x° xX% X°1,

Algorithm converges to

W, (t; )=[0.5017 -0.0020 1.0008]" .

W, (t;)=[0.5017 -0.0020 1.0008]". o T[2a 0 " [0.5017
1) —_1p"1 -
U (X)=—5R {cos(2x1)+2} Xo X 0.0020

0 2%, 1.0008



Paramsdare of the critic NN System Sates

= ! | |“| |
os D |'|‘ “’ y-r’.lr\-"', l”\

:z " “ -u.s: l""|I [\r ll vy

0 o R, 1 -
G w w W w e W e % W N
Tene (8) o L] 20 30 40 =1l B 70 1) a0 100
Tirne (5]
Critic NN parameters states

Ciptirnal Walue function
i Error between lhe approximated confral and the eglimal ane

Appraximation Emor of the Value fmction

: R

T,
W

AR

Optimal value fn. Value fn. approx. error Control approx error



Online Synchronous Policy Iteration using IRL

Does not need to know f(x)
Replace o=V (f+gu) by Adx(1)=a(x(1)-4(x(t-T))
Theorem (Vamvoudakis & Vrabie)- Online Learning of Nonlinear Optimal Control
Let Ag(X(t)) =g(x(1))—¢(x(t-T)) be PE. Tune critic NN weights as

Vi —a Ap(x()'
(1+ A(X(0)T Ag(x(D))

2[A¢(X(t))TV\71+ I (Q(x)+%v\7;51\,\72)df} Learning the Value

t-T

Tune actor NN weights as

W, = a, (FzV\72 EAdx (t))Tvvl)—%azﬁl W, Ap(x(t)' Wi, Learning the control policy
(L+Ag(x()T AG(x(1)

Then there exists an N, such that, for the number of hidden layer units N > N,

the closed-loop system state, the critic NN error W, =W, —W,

and the actor NN error W, =W, —V\A/2 are UUB bounded.



Can avoid knowledge of drift term f(x) by using Integral Reinforcement Learning (IRL)

Draguna Vrabie






Double Policy Iteration Algorithm to Solve HJI

Add inner loop to solve for available storage
Start with stabilizing initial policy Uy (x)

1. For a given control policy Uj(X) solve for the value Vju(X(1)

p——

2. Set d°=0 . Fori=0,1,... solve for Vji (x(t)), d'*

i : - 12
0=h"h+VVT (x)(f+gu;+kd")+u;"Ru; -2 Hd | H 75 game Bellman eq.

g =2i2 kT (x)VV|
y

On convergence set V1 (X) =V, (x)

~——

3. Improve policy:

_ _ 1 p-14T _ e Convergence proved by Van der Schaft if can solve
uJ+1(X) 2 R g (X)VVJJF1 nonlinear Lyapunov equation exactly

e Abu Khalaf & Lewis used NN to approximate V for
nonlinear systems and proved convergence

Off-line solution
Nonlinear Lyapunov equation must be solved at each step



Kyriakos Vamvoudakis

Online Solution of ZS Games
for Nonlinear Systems

Optimal (Game) Adaptive Control

Policy Iteration gives the structure needed for online solution

Need to solve online these 3 equations:

ZS game Bellman eq. for Value
0=h"h+VV T (x)(f +gu-+kd)+u" Ru-?|d|’

Disturbance update

d :iz kT (X)VV
2y

Control update

u(x)=-1iRg" ()VV



Use Three Neural Networks
Critic NN for VFA V (x) =W," ¢ (%)

Bellman eq becomes algebraic eq.

H (X, Wo,u) =W,V (f + gu+kd)+h"h+u"Ru—»2||d|’ =e,

Control Actor NN
u()=—1RgT ()V4'W,  Comesfrom  u(x)=-$R'g" ()VV

Disturbance actor NN

~ 1
d (x):z—jl/2 k' (X)V(élTWQ,, Comes from d=——>

~k' (x)VV
2y

Simultaneously:
a. Solve Bellman eq.

and
b. update u(x), d(x)



Online Synchronous Policy Iteration for ZS games

Theorem (Kyriakos Vamvoudakis)- Online Gaming

Let &, =Vg (f +gu+kd) be PE. Tune critic NN weights as

W, = 22 1o,TW; + h Qh—y* |d|} +u” Ru) Learning the Value
{crﬁo'w]}'

Tune actor NN weights as

sz—az{(szz F10'TW1)—Z D1 (X)W,m' (X)W1} _ o
_ Learning the control policies

A 1 — ~ ~
W3 =—a3 {( F4W3 F3O'TW1) 5 El(X)WsmTW]_}

4y |
where PiO=VAMIOIRg" (V4 (), me— %2
E,(\)=Va (0K V! (x), (02 o2 +1)
Then there exists an N, such that, for the number of hidden layer units N > N,

the closed-loop system state, the critic NN error V\~/1 =W, —V\A/1
and the actor NN errors W, =W, —V\72, V\~/3 =W, —V\A/3
are UUB bounded.



Actor-Critic structure —
A New Adaptive Controller with three tuned loops

Critic NN
Learning procedure

f

| ; ;
| T T X |
; s

| Controller state- mémory ;
T TR e |
I V=h"h+u' —u—<|d| |
: T T |
| A A :
lllllllllllllllllllllll rllllllllllllll llIlllllIlllllqllll-lIlllllIlllllIllllE
Controller/ i | Disturbance/ :
I .
Player 1 }- : i Player 2
s L avgrali UL | System d .
P U()=—FR TG (X)V e Wt > d(x) =L kT (X)W
; " ; = (x)+g0u+kx)d|* P73k LoV s e :
- I A RSP WS S
v X

A novel form of Hybrid Controller



ONLINE solution
Does not require solution of HJl eq, HJ eq, or nonlinear Lyapunov eq,.

Does require system dynamics to be known
Finds approximate local smooth solution to NONLINEAR HJI equation online
An optimal adaptive controller

‘indirect’ because it identifies parameters for VFA
‘direct’ because control is directly found from value function



Simulation 1- F-16 aircraft pitch rate controller

-1.01887 0.90506 -0.00215 0 1

X=| 0.82225 -1.07741 —-0.17555|x+|0|u+|0 |d Stevens and Lewis 2003

0 0 -1 1 0 X:[a q 5e]
y=CTx
Q=C'C=1, R=I Wind gust
Solves GARE online ATP+PA+Q—-PBR™'B'P +i2 PKK'P =0
/4

Exact solution Wl*:[pll 2P1p 2P13 Por 2P93 I033]T

=[1.6573 1.3954 -0.1661 1.6573 -0.1804 0.4371]"

Must add probing noise to u(x) and d(x) to get PE

u(x)=—1Rg" (YVAW, +n(t) (exponentially decay n(t))

Algorithm converges to Wy (t;)=[1.7090 1.3303 -0.1629 1.7354 -0.1730 0.4468]" .
W, (tg ) =W (t; ) =W, (t¢ )

T

2%, 0 0 |'[1.7090 ] 2%, 0 0 ]'[17090 ]

o % % 0| | 13303 o7 % % 0 || 13303

A X 0 x -0.162 A X 0 x -0.162
G,()=—3iR 0| | ® 1| | 01629 d(x)=-1;|0| | 1| | 01629
(| [0 2 0 ||L17354 2| [0 2% 0| | 17354

0 X3 X, | [-0.1730 0 X X, | |-0.1730

0 0 2| | 0.4468 0 0 2xg| | 0.4468 |




Critic NN parameters

System states

a0

40 F

30 ¢

20

-10

-20

-30

Parameters of the critic NN

Time (s)

Wc1
— W,
WC3
— Wy
WCS
WCE
0 1 1 1 1 1
0 100 200 300 400 500 B00
Tirne {s)
System States
i | l ‘ g
| TR
| .
Il | 'l ’h h
L )
I ! a I '“l‘ “;l"*ﬁl'\ .,*uh
I
1 Il 1 1 1
0 100 200 300 400 500 B00



F-16 aircraft pitch rate controller

Critic NN parameters
With disturbance

Critic NN parameters
Without disturbance

Converges FASTER with an opponent
One learns faster with an adversary

Parameters of the critic NN

cl

c2

lox]

WCS

ch

1 Il 1 1 1
100 200 300 400 s00 B00
Tirne {s)

Parameters of the critic MR

1 1 1 1 1 1 1
100 200 300 400 500 gO0 700 800
Tirne (5]



Simulation 3. — Nonlinear System
x=f(X)+g(X)u+k(x)d, xeR’

=X+ X ]

f (X) B _X13 - X23 + 0.25X2 (COS(2X1) + 2)2 - 0'25X2 i2(Sm(4X1) + 2)2
e

0
900 = {005(2x1)+2} [(Sin(4xl) + 2)}'
Q=I1, R=1, =8
. 01,1,
Optimal Value v (X)=ZX1 2%

Saddle point solution u"(x) =—(cos(2x,) +2)%,.  d"(x) =7—12(sin(4x1)+2)x2

Solves HJl eq. online  0=hTh+vvT (x)f (x) —%VVT (x)g(x)R*gT (X)VV (x) + 4%va (X)kk "WV (x)
4

Select VFA basis set o, (X)=[x" x5 %' %]
W, (t,) =[0.0008 0.4999 0.2429 0.0032]

Algorithm converges to
W (te)=Ws(ts ) =Wi(ts)

_T — —_
2x 0 | T0.0008

2x 0 | [0.0008
0= { 0 T 0 2% | |0.4999

. . 0 7| O 2x2| |0.4999
6,()=-1R 3 0 3 0
27 | cos(2x)+2 | | 4% 0.2429 4% 0.2429

_0 4X§_ 0.0032 _0 4X§_

sin(4x;)+2

0.0032




Paramters of the cntic NN System Slates

1 15

03 ::l !
1 .

osf Wy H

ary L 0s 1
OH |

T 00 =0 300 ) ) 100 750 0 =0 300
Tirnue (5 Tirnee (5
Critic NN parameters states

Appraximation Emar of the Value function
— Errar hatwsan Ogtimal and Appraximated cantod

Emar btwaan Optimal and Approxemated digturbancs

Value fn. approx. error Control approx error Dist. approx error
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3. Real-Time Solution of Multi-Player NZS Games

Kyriakos Vamvoudakis

Multi-Player Nonlinear Systems X = f(X)+Zgj (X)u; Continuous-time, N players

Optimal control Vi*(x(O),yl,yz, Uy = mlnI(Q,(x)+Zy, Rijeq) dt;  ieN

Nash equilibrium AV (T TSN ESV R (TR TSy PO N =\

Requires Offline solution of coupled Hamilton-Jacobi —Bellman egs.

N
0=(WV, )T f(x)—%Zgj(x)Rjjlg,T(x)vvj] +Q(x)+1 ZVV 9;(0ORj RiR}'9] (OVV;, V;(0)=0
1 i=

Control policies
1.7 .
4 () =-5Rigi (OVV; , ieN
Linear Quadratic Regulator Case- coupled AREs
0=RA +A'P+Q +ZP B;R R;R;'B|P;, ieN

=1
These are hard to solve
In the nonlinear case, HIB generally cannot be solved

103



Team Interest vs. Self Interest

The objective functions of each player can be written as
a team average term plus a conflict of interest term:

Ji :%(J1+Jz +33)+%(31—32)+%(31—33) = Jieam +~]1C0i
Js Z%(31+32 +33)+%(32 —31)+%(Jz —J3) = Jieam +J§0i

J3 :%(J1+32 +33)+%(33 —31)+%(33 —J3) = Jteam +J§Oi

For N-players

N N
J=EY 3+ > (9-9) = Jieam + 7, i=LN
j=1 j=1

For N-player zero-sum games, the first term is zero,
I.e. the players have no goals in common.



Real-Time Solution of Multi-Player Games
Non-Zero Sum Games — Synchronous Policy Iteration Kyriakos Vamvoudakis

N
=1

Value functions (X(O),M,ﬂz,---ﬂNFJ.(Qi (x) +
0 J=

Leibniz gives
Differential equivalent

Differential equivalent gives Bellman egs.

O:Qi(x)+ZN:UJTRiJ.uJ.Jr(VVi )T(f(x)+igj(x)uj) =H,(x,VV, ,u,...,uy), ieN

Policy Iteration Solution:

N
Solve Bellman eq. 0=r(x ..., /ukN)+(VVik)T[f(x)+zgj(x)ﬂlj} VK(0)=0 ieN
j=1

Policy Update w00 =3 Ritgl OV, ieN

Convergence has not been proven
Hard to solve Hamiltonian equation
But this gives the structure we need for online Synchronous PI Solution



Policy Iteration gives the structure needed for online solution

Need to solve online:

Coupled Bellman egs.

O:Qi(x)+iu}Rijuj+(VVi )T(f(x)+igj(x)uj) =H,(x,VV, ,u,...,uy), ieN

Control policies
u () =-3Ri'el OVV, , ieN

Each player needs 2 NN — a Critic and an Actor



Real-Time Solution of Multi-Player Games
Kyriakos Vamvoudakis

Online Synchronous Pl Solution for Multi-Player Games

Each player needs 2 NN — a Critic and an Actor

2-player case Player 1 A Play?: :
N Critic Neural Networks for VFA Vi (%) =W1T¢1(X) , Vo (X) =W ¢, (%)
N Actor Neural Networks U () ==-3Ri g (VA W3, | U0 =—3Rpy 05 (V' W,
On-Line Learning — for Player 1:
W, = 8 —— 21— [0y W, +Q (X) + Uy Rygy + Uy Ripy] Learns Bellman eq. solution

" (07 01 +1)

A ~ oA 1 B B ~ ~ 1 — ~ ~
Wy = —az{(FW; — F 55 W) —Zvﬁg(x) R RotRi g (Ve Wam,'W, 2 Dy (x)Wam;" W}

Learns control policy



Lyapunov energy-based Proof:

L(t) =V (x)+ %tr(\/\lT a,"W,) + %tr(\/\72T a,"W,).

/

V(x)= Unknown solution to HIB eq.

dv ) dv ) dv
0= 22| F+Q(X) -1 —= | gRg" —
(dxj Q) 4(dxj Y

Guarantees stability

V\72 :Wl _V\72

W,= Unknown LS solution to Bellman equation for given N

H (W, u) =W, Vg (f +gu)+Q(x)+u' Ru = ¢,



Simulation. — Nonlinear System — 2-player game

x=f(X)+g(X)u+k(x)d, xeR’

X2
”X’{—xz i+ Ly (cos(26) + 2) +%x2<sin<4xf>+2>2}

0 0
9= Los(zxo + 2}’ 0= {(Si”(‘“‘i) * 2)}'

Q=2Q,=2l, R,=2R,=2l, R,=2R, =2l

") = & o 1,01
Optimal Value s vy (><)=§><12+X22 VA (X):ZX12+EX22
Optimal Policies U™ (x) = —2(cos(2x,) + 2)X, d”(x) = —(sin(4x2) + 2)%,

Solves HIJB equations online

N N
0=(VV, )’ ( f(x) —%Zg i (ORj'9] (x)VV,} +Qi(x) +%Zvvj Tg;(0R; RiRjj'9] (VV}, V;(0)=0

=1 j=1
Select VFA basis set @1 (X) = 0(X) = [%° X% %3]
Algorithm converges to Wi (t;) =[0.5015 0.0007 1.0001]" =Wj(t;)

W,(t;)=[0.2514 0.0006 0.5001]" =W,(t;)

. T2 0 " 10.5015 o Tl 0 "10.2514
G(x)=-1R,* X, % | [0.0007| d(x)=-1iR,,* X, ¥ | |0.0006
O cos(2x) +2 o2 , 1.0001 S Sin(4x”) +2 o2 , 0.5001

2X, 2X,



Paramiriars of r.n1|r.1 MM
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Critic 1 NN parameters
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Online Synchronous Policy Iteration using IRL

Does not need to know f(x)
Replace o=V (f+gu) by Adx(1)=a(x(1)-4(x(t-T))
Theorem (Vamvoudakis & Vrabie)- Online Learning of Nonlinear Optimal Control
Let Ag(X(t)) =g(x(1))—¢(x(t-T)) be PE. Tune critic NN weights as

Vi —a Ap(x()'
(1+Ag(x(0)T Ag(x(D))

2(A¢(X(t))TV\71+ I (Q(x)+%v\7;51\,\72jdf} Learning the Value

t-T

Tune actor NN weights as

W, = a, (FzV\72 EAdx (t))Tvvl)—%azﬁl W, Ap(x(t)' Wi, Learning the control policy
(L+Ag(x()T AG(x(1)

Then there exists an N, such that, for the number of hidden layer units N > N,

the closed-loop system state, the critic NN error W, =W, —W,

and the actor NN error W, =W, —V\A/2 are UUB bounded.






Graphical Coalitional Games

SUN
TZU
ART of
WAR

Sun Tz bin fa



Games on Communication Graphs

SUN
TZU
ART of
WAR

Sun Tz bin fa



FL Lewis Supported by :

NSF - PAUL WERBOS
UTA Research Institute (UTARI) ARO. AFOSR
The University of Texas at Arlington ’

Games on Communication Graphs

W98 The University of Texas :
A ARLINGTON. http://ARRI.uta.edu/acs




Books Coming

F.L. Lewis, H. Zhang, A. Das, K. Hengster-Movric, Cooperative Control of Multi-
Agent Systems: Optimal Design and Adaptive Control, Springer-Verlag, 2013, to
appear.

Key Point

Lyapunov Functions and Performance Indices
Must depend on graph topology

Hongwei Zhang, F.L. Lewis, and Abhijit Das

“Optimal design for synchronization of cooperative systems: state feedback, observer and output
feedback,”

IEEE Trans. Automatic Control, vol. 56, no. 8, pp. 1948-1952, August 2011.



Graphical Games

Synchronization- Cooperative Tracker Problem Xo(t)
Node dynamics

% =Ax +Bu, X eR", u(t)eR™
Target generator dynamics

Synchronization problem
X; (t) = %o (1), Vi

Local neighborhood tracking error (Lihua Xie)

o = Z & (X —X;) +0;(X—%), Pinning gains g,20 (Ron Chen)
jeN;

K. Vamvoudakis and F.L. Lewis, “Graphical Games for Synchronization”
Automatica, to appear.



Graphical Games

Synchronization- Cooperative Tracker Problem
Node dynamics

% =Ax +Bu;, X(@{)eR", u(t)eR™
Target generator dynamics

Synchronization problem
X; (t) = %o (1), Vi

Local neighborhood tracking error (Lihua Xie)

o = Z & (X —X;) +0;(X—%), Pinning gains g,>0 (Ron Chen)
jeN;

Xo(t)

Standard way =
Global neighborhood tracking error

T T
s=[al o] - o] er™ x=[{ & - ] er™ x5 =Ix eR™

o

(L+G)®1,)(x-%)=((L+G)®1,)<, {=(x-%)eR™

Lemma. Let graph be strongly connected and at least one pinning gain nonzero. Then

<] <o)/ oL +6)

and agents synchronize iff o(t)—>0



Graphical Game: Games on Graphs
Local nbhd. tracking error dynamics Kyriakos Vamvoudakis

S5 = Zeij(xi —Xj) +0i(% —X)

jeN;
S = AS, + (d; +g,)B; Z &;B;u; Local agent dynamics driven by neighbors’ controls
jeN;
Define Local nbhd. performance index

3,(6,(0),u;,u_;) =1 j(éTQ”é FUT R+ D uTRyu)) E%jL(cS(t)u(t) u_, (1)) dt

jeN;

) ={u.:ieN. Values drlven by neighbors’ controls
u_; (t) { BELY

Local value functions for fixed policies U;

Vi (5 (1)) = j(&TQ,,a‘ FUT R+ > uT Ryu;) dt

jeN;

Static Graphical Game
(G,U,v)
G=(V,E), v=[v, - vy ]T Value depends only on neighbors
iU Uj:jeN}peR

Standard N-player differential game
N
5 Az+ZB-u- Dynamics depend on all other agents
171

B Values depend on all other agents
3.(2(0),u; u_;) = j(z Qz+Zu R;u;) dt

0



Graphical Game: Games on Graphs
Local nbhd. tracking error dynamics Kyriakos Vamvoudakis

S =) (% =%) + 00k —%)

jeN;

S = AS, + (d; +g,)B; Z &;B;u; Local agent dynamics driven by neighbors’ controls
jeN;

Define Local nbhd. performance index

3 (GO =3 j(éTQ..a‘w Riti + > U] Ryu ) dt =3 [ Ly (60,0 (0),u; (1) o
jeN;

0
u_ (t) —{Uj jeN:} Values driven by neighbors’ controls

Local value functions for fixed policies U;

Vi (5 (1)) = j(&TQ,,a‘ FUT R+ > uT Ryu;) dt

jeN;
Static Graphical Game
(G,U,v)
G=(V,E), v=[v, - vy ]T Value depends only on neighbors

iU Uj:jeN}peR



New Differential Graphical Game

U,

Local Dynamics
Local Value Function
Only depends on

graph neighbors

U;  Control action of player i

State dynamics of agent |
5 Ag; + (d; +9;)Bju; — Ze” iU

eN;
Value function of player i J

3.(8,(0),u u_;) = j(aTQ,,a Ful Ry + Y uTRyu;) dt
0 jeN;



Standard Multi-Agent Differential Game

U,

N

Central Dynamics
® > Local Value Function
depends on ALL

/ other control actions

Central Dynamics

N
‘ z'=Az+ZBiui
i=1

U. Control action of player i

Value function of player i

o0 N
J:(z(0),u;,u_;) Z%I(ZTQZ+ZU} Riju;) dt
=

0



Team Interest vs. Self Interest

Cooperation vs. Collaboration

The objective functions of each player can be written as
a team average term plus a conflict of interest term:

Ji :%(J1+Jz +J3)+%(31—32)+%(31—J3) = Jieam +31C0i
‘J2 :%(J1+J2 +‘]3)+%(JZ _‘]1)"'%('-]2 _‘]3) = ‘Jteam +‘J§Oi

J3 :%(J1+‘]2+J3)+%(J3_Jl)+%(‘]3_‘JZ)E‘Jteam +J§Oi
For N-players
J—iNJ AN J-J)=J J =1 N
i_sz+NZ(i j)— eam TYi » 1=4
j=1 j=1

For N-player zero-sum games, the first term is zero,
I.e. the players have no goals in common.



Problems with Nash Equilibrium Definition on Graphical Games

Game objective

Vi (S (1) = minj‘%(@TQiﬁi +u; Ryu; + Z uj Ryu;) dt
i t ieN;
Define u;(), {uj:jeN} Neighbors of node i
Ug_i ={uj:jeN,j=i} All other nodes in graph

Def: Nash equilibrium

I 23, (U ug) < J; (U ,ug_;), YieN

Counterexample. Disconnected graph : : :
Then, each agent’s cost does not depend on any other agent . o o
Ji (up) =J; (U ug_) = J; (Uj,u'g), Vi
Let each node play his optimal control Another example

3=

Then all agents are in Nash equilibrium / p
Note- this Nash is also coalition-proof




New Definition of Nash Equilibrium for Graphical Games

Def. Local Best response.
U; issaid to be agent i’s local best response to fixed policies U_; of its neighbors if

3 (U, us) < 3 (U ug), Y,

Def: Interactive Nash equilibrium

{ul,uz ----- UN} are in Interactive Nash equilibrium if

1. J 23 (u,ug)<J (Ui ug), VieN i.e. they are in Nash equilibrium

2. There exists a policy u; such that
‘]i (UJ,U(E_J)¢J| (UT,UZ;_J), V|,JEN

That is, every player can find a policy that changes the value of every other player.

A restriction on what sorts of performance indices can be selected in multi-
player graph games.

A condition on the reaction curves (Basar and Olsder) of the agents

This rules out the disconnected counterexample.



Theorem 3. Let (A,B,) be reachable for all i.
Let agent j be in local best response

J; (Ui, us) < 35 (g, uy), Vi

Then {uf,uz,...,u;} are in global Interactive Nash iff the graph is strongly connected.

oV,
U =uV.)=—(d +0a)R:IB"T 1 = _K.p.
| I(\/I) ( | gl) 11 | 85 Ipl

U, =—Ky Py — Vi B/

Hamiltonian System A

'5} {(IN ® A) ((L+G)®In)diag(BiKi):||:5:| {((L+G)®In)§k}_ _{
' p| |—diag(Q;) —(Iy ®A") P 0

B AE A'B -]

Picks out the shortest path from node k to node i

o
P

|

+ BV,



Graphical Game Solution Equations
Value function

Vi(5 (1) =1 I(éTQ..fHU Ryl + > U] Ryu;) dt

jeN;

Differential equivalent (Leibniz formula) is Bellman’s Equation

oV. v, T

Hi(§i,a—5:,ui,u_i)za—5: AS, + (d; +g,)Bu; — JEZN:e,J Uj |+167T Qs +3ul Ryuy +4 JEZN:u TRyu; =0
Stationarity Condition
OoH. oV,
0=— = u =—(d; +g,)R;'B,’ —-
ou; a6,
1. Coupled HJ equations
A +167 Q6 +1(d; +g)28v BRlBT—+ Z(d +g) J' B;R;'RyR;'B;’ i —1-0/ieN
85 n 2 ) IR TR TR | 0.

i ' jeN; J

Vi »
Hi(5i'6—5liui u_)=0

| 1 OV oV,
where  A°=As —(d; +g;)°BR: 1B —-+ Z & (d; +0;)B;R'B;’ —L.,ieN
Iy 09;

2. Best Response HJ Equations — other players have fixed policies U;

oV, . v, '
0=H; (5 85 —|)=_ A lé‘TQué""l(d +g)2 BiRiilBT + ZU le i
i | | ]EN

oV,
where AS = AS, — (d; +g;)? BR,,lBT - &;Bju;
' jeN;



Theorem 1. Stabilitv and Solution for Cooperative Nash
Equilibrium.
Letl; =0« c! .ie N be smooth solutions to HJ equations
(23) and control policies u: . i€ N be given by (22) 1n terms
of these solutions V. Then
a.  Systems (8) are asymptotically stable.

*

b, w; .u_; are m cooperative Nash equilibrium and the

corresponding game values are
J; (5(0) =V, .ieN (34)

Kyriakos Vamvoudakis

Theorem 2. Solution for Best Response Policy
Given fxed neighbor policies w_; ={u;:jeN;}. assume

there 1s an admissible policy u, . Let ¥, >0¢e C'be a smooth
solution to the best response HJ equation (36) and let control
policy u: be given by (22) 1n terms of this solution V. Then
a.  System (8) 1s asymptotically stable.
b. *u: 15 the best response to the fixed policies u_, of its
neighbors.



Online Solution of Graphical Games

Use Reinforcement Learning

POLICY ITERATION

Algorithm 1. Policy Iteration (PI) Solution for N-plaver
distributed games.
Step 0: Start with admussible initial policies u? VWi

Step I: (Policy Evaluation) Solve for I'f!-‘rr using (14)
k
(o]
H;-(ﬁ,-,ﬂ—ﬁ' ,u,-k,u_f} =0.¥i=1_....N (38)
5,
Step 2: (Policy Improvement) Update the N-tuple of control
policies using
k
. (] 8
u!'-H-l = argmun 5, (5,.—- ,ui-,ﬂ_,-k}_‘-?'z'=l _____ N
i, aﬁi-

which explicitly 1s
rov;f

" =—d;+g)Ry B — L Vi=l..N.  (39)
od;
Go to step 1.
On convergence End |

Kyriakos Vamvoudakis

Convergence Results

Theorem 3. Convergence of Policy Iferation algorithm
when only i agent updates its policy and all players u_;in
the neighborhood do not change. Given fixed neighbors
policies w_;. assume there exists an admissible policy wu;.

Assume that agent 7 performs Algonithm 1 and the its
neighbors do not update their control policies. Then the

algorithm converges to the best response u; to policies n_; of
the neighbors and to the solution V; to the best response HJ
equation (36).

The next result concerns the case where all nodes update
their policies at each step of the algonithm. Define the relative

control weighting as p; = E(R;R&-}, where E(R;R{-j} 1s the

maximum singular value of R;-II R;.

Theorem 4. Convergence of Policy Iteration algorithm
when all agents update their policies. Assume all nodes 7
update their policies at each iteration of PI. Then for small

enough edge weights ¢; and o;. g, converges to the global

Nash equilibrium and for all 7, and the values converge to the
optimal game values If’,-k — I*’,-*.



Online Solution of Graphical Games
New Structure of Adaptive Controller

Reinforcement Learning Adaptive Critic

< Policy Evaluation|
qe5 (Critic network)

Control policy update ' Value update

Action network | ¢——

Critic and Actor tuned simultaneously
Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Do not need to know system drift dynamics % = T (%) +9(x)uy,

Best Paper Award, Int. Joint Conf. Neural Networks, Barcelona, 2010. Draguna Vrabie and F.L. Lewis,
“Adaptive Dynamic Programming Algorithm for Finding Online the Equilibrium Solution of the Two-Player
Zero-Sum Differential Game.”

F.L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE
Circuits & Systems Magazine, Invited Feature Article, pp. 32-50, Third Quarter 2009.
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6. ADP Using Reduced State Information (Output Feedback)
(Partially Observable Markov Decision Processes)

DT Linear Quadratic Regulator Optimal Control

DT System  Xgy1 = AX + Buy
Y = CXy

Performance measure VH (%) = Z(YiTQYi +ul Ru; ) =3r
i=k i=k
. T T
Utility e = Yk QYk + Uk Ruy
. .. y7, v
Value is quadratic in the state V" (Xx) = X PX,

Algebraic Riccati Equation
0=A"PA-P+C'QC-ATPB(R+B'PB)'B'PA
Optimal feedback gain (policy)
u, =—Kx, =—(R+B'PB) B PAX,

Off-line solution
Requires knowledge of system dynamics A,B,C

We want online solution of ARE using only measured input/output data



Bellman equation Xp PX, = Vi Qyy +Up RU, + X0 1PX g

Value function is Quadratic in the state

Policy Iteration Algorithm
i. Start with stabilizing control policy
ii. Value Update

iii. Policy Improvement ulg“ = —(R+BTPI"B) BT PI*AX,

Value Iteration Algorithm

i. Start with ANY control policy

Tpi+ly, _ T InT j T i
ii. Value Update X PT7% = v Qi + (u)' Ruyf + X1 PIX4q

iii. Policy Improvement  yl* = _(R+BTPI*B) BT PI*AX,

REC]UiI’ES state measurements

0= —XI PHle + YI Qyy + (Ud )T RUQ + XI+1PJ+1X|<+1 Lyapunov Equation

Lyapunov recursion



Expanded State Equation (ESE)

Express state in terms of inputs and outputs

System X1 = Ax +Buy X €R", u eR", y eR"
Yk = CXy . _
/- Uy Reachability matrix
Expanded State Equation
{ A )| et
Uy _
X =A% y+[B AB A%B .. ANIB] K7 U 1N
Uk-N
- 0 CB CAB - CAN-2] .
Yk CA- 0 0 CB . cAN-3g k-1
Yk-2 R ) )
17 e Xeen +H| 0 . . : :
) o - 0 CB y
YN ¢ 00 0 0 k=N
Yk-1.k=N f \ Y J
Observability N Invertibility matrix of Markov Parameters
matrix

N _
X = A7 Xn tUNU kN

Y1 k=N =VNXkon + TnUk 1 kN



Express State in Terms of Previous Inputs & Outputs

Observable implies V), has full column rank n

AN =MV, for N greater than the observability index

M = ANV +Z(1 =VyVR) =My + M,
MP pseudoinverse is V3 = VyVy) " Vy

Projection on range perp. V, is P(R"(Vy))=1-VyVy

1. From VYk-1k-N =VNXk-n T TNUk_1k-N
N _ _
A" X n =MV XN = MY gy —MT U g kN

(Mg + MV Xy = (Mg +M)Viieen — (Mg + M) Tl g k-
but My =0
SO 0=M;Vi 1xn —MTNTkn, YM; st MVy =0
Then A%X N =MV XN =MoFik-n —MoTn Tk k-n
2. From X =A"x y +UnT gk n

Then state in terms of inputs & outputs is

X = MoV kN +(Un ~MoTn )Tk ak-n =M yViakon + Myl gk

Markov parameters

So
Uk 1 k—N
X =My My | -
Yk-1 k=N
Yi-1 U1
_ _ _ Uy _
Ve rin = yﬁ 2 O 1k = h 2

Yk-N




Prior Work

X = MoV kN +(Un ~MoTh )T ikon =MyViakon + Myl gken

But this needs to know dynamics A,B,C to compute M, and M,

A lot of work has been done to

. . T bry-1RT
express the optimal control policy U =—Kx, =—(R+B PB) "B’ PAX
in terms of inputs and outputs

and identify the Markov Parameters online

We can avoid all this by using Reinforcement Learning techniques
RL Can learn the System Parameters online



Express Bellman Equation in Terms of Inputs & Outputs

Bellman Equation Xk PXc = Yk Q% +Ug Rug +%,1PX1  Quadratic in state

Ug 1k -
We know X :[MU MY]{—k o N} } ZK-1k-N Y1 U1
Yk-1,k-N - Yk-2 - Ux—2
MT Yk-1,k-N = : ; Uk-1k-N = :
Value in terms of i/o V" (x) = X, PX = Z__1n [M“T]P[Mu My |Zeakon Yk U
y
My PM, MJPM
=T u u u y |- T = _
VI(4%) =Zcakn| o T Zkak-N = Zkak-NP Zeaken
MJPM, M]PM,

ARE solution and Markov Parameters
- =T o5 T T 5T D>
Bellman Equation Z 1 kN PZk_1ken = Yk QY + U RUg +Z kN1 PZk kN1
=T oo T T =T D>
TD error € = —Zk1k—N PZk1 kN + Yk QVk + Uk R +Zy k_N+1PZk kN1

Quadratic in previous inputs & outputs

We can use either Pl or VI to learn the parameter matrix P
ONLINE in Real-Time using measurements of inputs/outputs
Along the system trajectories

System parameters are not needed for Value Update Step



Policy Update Step with no System Information

. T S T T _T S
Bellman Equation  Zk_1k-NPZx_1k-N = Yk QYk + Uk RUx +Zy k _n11PZk k-N 41
Policy Update u(x ) =arg min(yIka + Uy Ruy +7|<T,k_N+1|57k,k—N+1)

Uy
, o ] ) MIPM, MPM _
Value is quadratic in previous i/o V”(Xk)—fle,kN[ ‘; - “T y}fkllk,\, =70 1N P Tetken
MIPM, MIPM
y u y y

_ RLETEY
Zy 1k-N =

Yk-1k-N

U, ]T Po Py py{ " ] Quadratic in inputs and outputs.

Partition as ZkontPTonss = | Tkerkonst | [ Po Pz Pog || Tcakona Has same form as Q learning.
7k,k—N+l p;l; P32 P33 yk,k—N-HI.
T
Uy Po Py py Uy

, T T - T -

Policy Update Step u(xc) =argmin| y, Qyy +Ug Rug +| U g nsa | [Py Po Pog || Ukakonsa
u — —

‘ Yek-N+1 | | py P Pag || Ykk-No1

Differentiate wrt u, 0 = Ruy + Pty + Pylk 1 kN1 + Py Yk k N1

Policy Update  u, =—(R+ po)_l(puak—l,k—Nﬂ + pka,k—N+1)

Do NOT NEED A or B! Compare to ul™ = —(R+BTPI*B) BT PI*Ax,




Policy Iteration using output measurements

Policy Evaluation- solve Bellman equation for p

T —_ T T T —_
ko1 k—NPZk1k-N = Yk QYk +Ux Rug +Z « _N11PZk konna

Unpack parameters into matrix form

Uy T pO pu py Uy

=T — = T _
Kk-N+1PZk ken+1 = Ukak-N+1 | | Pu P2 Pos || Uk k-Nat

Yek-N+1 | | py Py Pag |l Ykk-N+1
Control Update

U =—(R+ po)_l( Pulk-1k-N+1 pka,k—N+1)

Does not need ANY system dynamics
Looks a lot like Q learning — but Q needs states




The Controller is in ARMA Polynomial Regulator Form!

U =—(R+ po)_l( Pulk-1k-N+1 T pka,k-N+1)

An ARMA Controller that is equivalent to the optimal SVFB gain

Compare to the Optimal Polynomial regulator in
Lewis and Syrmos, Optimal Control, 1995



Simulation Example Also works for unstable systems

L[t -08] 1]
K171 o KT oK ARE solution P
yk :[1 —0.8]Xk

1.0150 -0.8150
-0.8150 0.6552

10150 -0.8440 1.1455 -0.3165
Actual Pbar matrix 5_ My PM, MPM, 0.8440 07918 -1.0341 0.2969
- 1.1455 -1.0341 1.3667 -0.3878

-0.3165 0.2969 -0.3878 0.1113

p=
T T
MjPM, M]PM,

1.1340 -0.8643 1.1571 -0.3161
-0.8643 0.7942 -1.0348 0.2966
1.1571 -1.0348 1.3609 -0.3850
-0.3161 0.2966 -0.3850 0.1102

a ol
Paramsters of PM i

Learned Pbar matrix

o>

Syslem Slales

=
o
=
I
=
B
b=l o
&
5
&
&

Tirre

i
wl

10 15 Ful
Falicy Murnbsr

(=)
-

State trajectories

0=A"PA-P+C'QC-ATPB(R+B'PB)™B"PA

Convergence of p,, p,, p,

Solves ARE online
Without knowing A, B and without measuring states



Our revels now are ended. These our actors,
As | foretold you, were all spirits, and
Are melted into air, into thin air.

The cloud-capped towers, the gorgeous palaces,
The solemn temples, the great globe itself,

Yea, all which it inherit, shall dissolve,

And, like this insubstantial pageant faded,

Leave not a rack behind.

We are such stuff as dreams are made on,
and our little life is rounded with a sleep.

Prospero, in The Tempest, act 4, sc. 1, . 152-6, Shakespeare
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The way that can be told is not the Constant Way
The name that can be named is not the Constant Name

For nameless is the true way
Beyond the myriad experiences of the world

To experience without intention is to sense the world
All experience is an arch
wherethrough gleams that untravelled land

whose margins fade forever as we move

Dao ke dao feichang dao
Ming ke ming feichang ming



